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The paper presents an overview of experimental evidence and present understanding of
nonlinear dielectric, elastic and piezoelectric relationships in piezoelectric ceramics. This
topic has gained an increasing recognition in recent years due to the use of such materials
under extreme operating conditions, for example in electromechanical actuators and high
power acoustic transducers. Linear behaviour is generally confined to relatively low levels
of applied electric field and stress, under which the dielectric, elastic and piezoelectric
relationships are described well by the standard piezoelectric constitutive equations.
Nonlinear relationships are observed above certain ‘threshold’ values of electric field
strength and mechanical stress, giving rise to field and stress-dependent dielectric (ε),
elastic (s) and piezoelectric (d) coefficients. Eventually, strong hysteresis and saturation
become evident above the coercive field/stress due to ferroelectric/ferroelastic domain
switching. The thermodynamic method provides one approach to describing nonlinear
behaviour in the ‘intermediate’ field region, prior to large scale domain switching, by
extending the piezoelectric constitutive equations to include nonlinear terms. However, this
method seems to fail in its prediction of the amplitude and phase of high frequency
harmonic components in the field-induced polarisation and strain waveforms, which arise
directly from the nonlinear dielectric and piezoelectric relationships. A better fit to
experimental data is given by the empirical Rayleigh relations, which were first developed
to describe nonlinear behaviour in soft magnetic materials. This approach also provides an
indication of the origins of nonlinearity in piezoelectric ceramics, in terms of ferroelectric
domain wall translation (at intermediate field/stress levels) and domain switching (at high
field/stress levels). The analogy with magnetic behaviour is also reflected in the use of
Preisach-type models, which have been successfully employed to describe the hysteretic
path-dependent strain-field relationships in piezoelectric actuators. The relative merits and
limitations of the different modelling methods are compared and possible areas of
application are identified. C© 2001 Kluwer Academic Publishers

1. Background and aims
Polycrystalline piezoelectric ceramics are by neces-
sity also ferroelectric, since it is necessary to be
able to induce a preferred direction of polarisation
within a piezoceramic component in order to obtain
a macroscopic piezoelectric response. By definition,
any ferroelectric material will exhibit a nonlinear P-E
(polarisation-electric field) relationship at sufficiently
high field strengths, which is associated with the reori-
entation of the spontaneous polarisation by the electric
field. Therefore, it follows that the dielectric proper-
ties of piezoelectric ceramics are inherently nonlinear.
Reorientation of the spontaneous polarisation also pro-
duces an associated change in strain, giving rise to a
nonlinear piezoelectric x-E (strain-electric field) re-
sponse. The reorientation of 90◦ ferroelectric domains
(for tetragonal ferroelectrics) or 71/109◦ ferroelectric
domains (for rhombohedral ferroelectrics) under an
applied mechanical stress means that the x-X (strain-

stress) relationships of piezoelectric ceramics are also
inherently nonlinear.

The effective dielectric, elastic and piezoelectric co-
efficients of piezoelectric ceramics show pronounced
dependencies on the applied electric field strength and
stress intensity, due to variations in the ferroelectric do-
main wall contributions to those properties. It is some-
what surprising then to note that the majority of the
published data on commercial piezoelectric ceramics
assumes a perfectly linear response according to the
piezoelectric constitutive equations:

xm = SE
mn Xn + d X

im Ei → xm = SE
mn Xn + d X

im Ei (1)

Di = d E
im Xm + εX

i j E j (2)

Here, D is the dielectric displacement, ε the dielec-
tric permittivity, s the compliance and d the piezo-
electric charge/strain coefficient. Superscripts indicate
the independent variable held constant while subscripts
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indicate components of the vector or tensor quantities.
Summation over all possible components of X or E is
assumed for repeated subscripts.

The linear description provides a reasonable approx-
imation of the functional characteristics of piezoelec-
tric ceramics at low levels of applied electric field and
stress, but becomes increasingly inaccurate as the field
and stress levels increase. The discrepancies between
published data (usually measured at low field levels)
and the functional behaviour of piezoelectric ceram-
ics under ‘real world’ operating conditions is imme-
diately apparent in piezoelectric actuators, where rel-
atively high electric field levels (∼0.5 kV mm−1) are
necessary to obtain a useful actuation effect. Under
such conditions, the effective piezoelectric strain co-
efficient of a soft PZT ceramic can easily rise to a level
that is 100% greater than the nominal value, as shown
in Fig. 1 below. Pronounced nonlinearity and hystere-
sis in the strain-field relationship are also evident under
such conditions.

Reductions in the thickness of piezoceramic lay-
ers, for example in cofired multilayer actuators and
thick/thin film piezoelectric devices, has enabled larger
strains to be developed at moderate voltage levels. How-
ever, this has also meant that the nonlinear charac-
teristics are all the more pronounced. Therefore, the

(a)

(b)

Figure 1 (a) Strain-electric field relationship and (b) increase in effective
d33 coefficient with field amplitude for soft PZT ceramic (data provided
by M Stewart, NPL).

practical significance of the nonlinear behaviour of
piezoelectric ceramics, and the need to develop im-
proved models for their functional characteristics, have
gained an increasing recognition. As a result of this,
many studies of nonlinearity in ferroelectrics have been
carried out during the past 10 years. Most of these have
been concerned with nonlinearity in the dielectric prop-
erties, since these are the most straightforward to de-
termine by purely electrical measurements.

Some investigations have been carried out to estab-
lish the extent of nonlinearity in the direct and con-
verse piezoelectric properties of ferroelectric ceramics.
In most cases, these studies considered the influence of
electric field amplitude (for the converse effect) or me-
chanical stress level (for the direct effect) in isolation.
Considering the combined effects of electrical and me-
chanical loading, as will be necessary for piezoelectric
actuators acting against an external mechanical load,
leads to further complexity, as is discussed in Section 3
below.

The aim of this review is to provide a state of the art
overview of the characteristic features of nonlinearity
in piezoelectric ceramics, together with an insight into
the underlying mechanisms responsible for nonlinear
behaviour. Suitable approaches for modelling the non-
linear dielectric, piezoelectric and elastic (mechanical)
properties are also considered in the final sections of
the review.

2. Experimental studies of nonlinearity
in piezoelectric ceramics

2.1. Extrinsic contributions to low field
dielectric, piezoelectric and elastic
properties

It was recognised in the earliest studies on ferroelectrics
that the movement of ferroelectric domain walls should
make a significant contribution to the dielectric prop-
erties [1]. This was most evident in the saturated fer-
roelectric P-E hysteresis loop where the reversal, or
‘switching’, of domains under the influence of an ap-
plied electric field gave rise to a significant remanent
polarisation and a pronounced hysteresis loss. At lower
field levels, the reversible vibration of domain walls
about an equilibrium position was also supposed to pro-
vide a significant contribution to the dielectric proper-
ties. Lewis referred to the domain switching and domain
wall vibration mechanisms as macrohysteresis and
microhysteresis respectively [2]. It is usual practise
to distinguish between such extrinsic ferroelectric
domain-related polarisation mechanisms and the intrin-
sic ionic (or volume) response that would be obtained
in a single domain, single crystal ferroelectric.

Both the intrinsic and extrinsic mechanisms con-
tribute to the real ‘in-phase’ components of field-
induced strain and dielectric displacement, whereas the
imaginary lossy components are due solely to the ex-
trinsic mechanisms. Thus, we can represent the dielec-
tric, piezoelectric and elastic coefficients as [3]:

ε∗ = ε′ − jε′′ ε′ = ε′
in + ε′

ex ε′′ = ε′′
ex

d∗ = d ′ − jd ′′ d ′ = d ′
in + d ′

ex d ′′ = d ′′
ex (3)

s∗ = s ′ − js ′′ s ′ = s ′
in + s ′

ex s ′′ = s ′′
ex
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where ‘∗’ denotes a complex quantity and the indices
‘in’, ‘ex’ refer to intrinsic and extrinsic contributions
respectively.

It should be noted that the extrinsic ferroelectric
domain-related contributions to the dielectric, piezo-
electric and elastic properties can be further subdivided
into those due to domain wall vibration, domain wall tr-
anslation, and domain switching. It is usually assumed
that only domain wall vibration will provide a contribu-
tion for field levels below approximately 10 V mm− 1.
The methods used by various researchers to quantify the
linear domain wall vibration contributions at low field
levels are summarised below, while subsequent sections
are concerned with the nonlinear effects associated with
domain wall translation and domain switching.

In general, the intrinsic and extrinsic contributions
to any given property can be separated by consider-
ing their variations as a function of some externally-
controlled variable. Most of the investigations on fer-
roelectric ceramics have studied the effects of either
frequency of the measuring field, temperature, or age-
ing time. Each of these methods is described in further
detail below.

The frequency-dependence of dielectric properties in
ferroelectric ceramics usually reveals the presence of a
relaxation step at a frequency f0 ∼ 109 Hz, which is
thought to be associated with the domain wall vibra-
tion contribution. Von Hippel described some of the
early studies of this effect in ferroelectrics [1]. Later
work by Poplavko et al. demonstrated that in barium
titanate ceramics a relaxation step of around 600 in the
dielectric permittivity could be observed at a frequency
of approximately 4 GHz, as shown in Fig. 2 [4].

If this data is ascribed to the loss of the domain wall
contribution at high frequencies, then the remaining
permittivity value at frequencies higher than f0 can be
identified as being due solely to the intrinsic ionic re-
sponse, which is assumed to be independent of fre-
quency. This enables an estimation of the intrinsic and
extrinsic contributions at frequencies below f 0 as ap-
proximately 500 and 600 respectively.

Similar studies have been carried out subsequently on
other BaTiO3 and PZT-based ceramics [5–8]. Although
similar relaxations steps were observed, their origin has
been questioned and some alternative mechanisms sug-
gested [5, 8]. For the present purpose, the exact origin

Figure 2 Frequency dependence of dielectric properties of barium
titanate ceramics, after Poplavko et al. [4].

of the relaxation step is not of great importance since
this method is only appropriate for measurement of the
dielectric properties and the measurement techniques
themselves present significant practical problems.

The variation of the dielectric, piezoelectric and elas-
tic properties of ferroelectrics as a function of temper-
ature has been studied by several authors as a means
of separating the intrinsic and extrinsic contributions.
The basic principle of this method is that the domain
wall contributions are frozen out at temperatures close
to absolute zero. Thus, the intrinsic contribution can
be determined exactly at absolute zero. If an approx-
imate form of the temperature-dependence of the in-
trinsic contribution can be derived, then this enables
a determination of the extrinsinc contribution at any
given temperature.

Typical results obtained by Herbiet et al. using this
method are shown in Fig. 3 [3]. In this case, the dielec-
tric, piezoelectric and elastic coefficients ε33, d31 and
s11 were measured simultaneously by using a length-
extensional piezoelectric resonator with a resonant fre-
quency of approximately 150 kHz [9].

A similar method was utilised by Zhang et al. to de-
termine the intrinsic and extrinsic contributions to the
ε33, d33 and d31 coefficients of soft PZT ceramics [10].
Their analysis was based on the simple hypothesis that
the extrinsic contribution to the hydrostatic piezoelec-
tric coefficient dh should be zero, since the motion of
domain walls does not involve a change in volume. This
enabled a separation of the intrinsic and extrinsic con-
tributions to d33 and d31, as shown in Fig. 4.

(a)

(b)

Figure 3 Determination of (a) intrinsic and (b) extrinsic contributions to
ε33, d31 and s11 of an undoped PZT ceramic as a function of temperature,
after Herbiet et al. [3].
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Figure 4 Separation of intrinsic and extrinsic contributions to d33 and
d31 coefficients of soft PZT ceramics, after Zhang et al. [10].

Figure 5 Temperature dependence of the intrinsic and extrinsic contri-
butions to the dielectric permittivity for soft PZT ceramics, after Zhang
et al. [10].

Furthermore, by utilising the relationships between
ε33, d33, d31 and dh, via the electrostrictive coefficients
Q11, Q12 and Qh, it was possible to estimate the in-
trinsic and extrinsic contributions to ε33, as shown in
Fig. 5. It is clear from the published results that the ex-
trinsic contributions to ε, d, and s of soft PZT ceramics
at room temperature and low field levels are significant
and may account for 50–80% of the overall response.
There are clearly differences in the temperature depen-
dence of the extrinsic components of ε and d, as re-
ported by these authors. The origin of this discrepancy
is unclear at present, but may be related to differences
in the measurement method or in the different materials
under investigation in each case.

The domain wall contributions to the properties of
hard piezoceramics are likely to be much smaller than
those in soft piezoceramics. In fact, the dopants (ac-
ceptors or donors) that are used to modify the prop-
erties of PZT ceramics are thought to act largely by
modifying the extrinsic response [10]. Donor dopants
(e.g. La, Nb) are found to facilitate ferroelectric domain
wall motion and result in soft PZT ceramics with high
piezoelectric coefficients and relatively high dielectric
loss [11]. In contrast, acceptor dopants (e.g. Mn, Fe)
inhibit ferroelectric domain wall motion and result in
hard PZT ceramics with lower piezoelectric coefficients

and much reduced dielectric loss. These effects are
attributed largely to the presence of oxygen vacancies,
the concentration of which is increased by acceptors
and suppressed by donors.

Paired acceptor ion-oxygen vacancy defect asso-
ciates e.g. Ni ′′

T i − V ••
0 constitute dipolar defects that

retain a limited mobility at ambient temperatures. These
defects can be reoriented under the influence of the lo-
cal domain polarisation, causing a gradual stabilisation
of the ferroelectric domain structure and a reduction of
domain wall mobility. This gives rise to ageing effects
in ferroelectrics, characterised by gradual reductions in
the dielectric, piezoelectric and elastic coefficients af-
ter a high temperature electroding or poling operation
[3, 12].

These processes provide another means of determin-
ing the extrinsic contributions, since the intrinsic re-
sponse is assumed to be independent of ageing time.
Thus, the time-dependent dielectric, piezoelectric and
elastic coefficients can be written as:

ε′(t) = ε′
in + ε′

ex (t) ε′′(t) = ε′′
ex (t)

d ′(t) = d ′
in + d ′

ex (t) d ′′(t) = d ′′
ex (t) (4)

s ′(t) = s ′
in + s ′

ex (t) s ′′(t) = s ′′
ex (t)

These time-dependent coefficients generally decay in a
logarithmic manner during ageing, as shown in Fig. 6a.

(a)

(b)

Figure 6 (a) Time dependence of ε′
r and ε′′

r , (b) ε′
r-ε

′′
r , d′-d′′ and s′-s′′

relationships for Fe doped hard PZT ceramics during ageing at 80 ◦C,
after Herbiet et al. [13].
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Arlt et al. developed a phenomenological model of a
vibrating domain wall, in which it was recognised that
the ratio of the imaginary to the real parts of the di-
electric, piezoelectric and elastic coefficients should be
constant and equal to the loss tangent tan δdv associated
with the domain wall vibration mechanism [14]:

ε′′
dv

ε′
dv

= d ′′
dv

d ′
dv

= s ′′
dv

s ′
dv

= tan δdv (5)

Plotting the real vs imaginary components of these
coefficients, measured as a function of ageing time,
yielded a linear relationship with a gradient of tan δdv .
Extrapolation of the line to zero loss yields the intrinsic
contribution and hence enables the magnitude of the
extrinsic contribution at any given ageing time to be
quantified, as shown in Fig. 6b.

This separation procedure can be employed only for
acceptor-doped hard ferroelectric ceramics, which ex-
hibit significant ageing effects. The results of such mea-
surements serve to illustrate the clamping effect of the
dipolar defect associates on the domain walls and the
‘freezing out’ of the lossy domain wall contributions
to the dielectric, piezoelectric and elastic properties. In
particular, the substantial reduction in dielectric loss
during ageing is the primary reason why acceptor-
doped hard PZT ceramics can be used in low loss, high
power piezoceramic components. It also accounts for
the ultimate instability of hard piezoceramics under ex-
tended exposure to high AC electric fields, which can
cause field-forced deageing effects that lead to large
increases in dielectric loss and, eventually, transducer
failure.

2.2. Dielectric nonlinearity
Early studies of dielectric nonlinearity in ferroelectric
ceramics identified a ‘threshold field’ Et, below which
the dielectric properties were essentially independent
of the field amplitude E0 but beyond which both the
dielectric permittivity and loss exhibited a sharp in-
crease due to enhanced domain wall mobility or do-
main switching [2]. The value of Et is often defined
somewhat arbitrarily as the field amplitude at which the
dielectric permittivity is observed to rise by a small frac-
tion (say 5%) above its low-field value [15]. The thresh-
old field level was found to be much higher in hard
ferroelectrics, in comparison with soft ferroelectrics,
and increased significantly during ageing [16]. Typical
threshold field values are 10 V mm− 1 for soft PZT and
300 V mm− 1 for well-aged hard PZT [17]. Beyond Et,
the dielectric permittivity and loss were observed to
increase rapidly with field amplitude due to enhanced
domain wall mobility or domain switching, as shown
in Fig. 7.

This behaviour represents nonlinearity in the dielec-
tric properties, since the relative dielectric permittivity
εr is usually defined in terms of the linear relationship
between dielectric displacement D and electric field E ,
for which εr is taken to be a constant:

D = ε0εr E (6)

In most practical situations, with the exception of shear
mode piezoelectric transducers, the absolute permittiv-

(a)

(b)

Figure 7 Dependence of dielectric permittivity and loss on field am-
plitude for (a) Ba(Ti0.95Zr0.05)O3 and (b) (Ba0.98Ni0.02)TiO3 ceramics,
after Lewis [2].

ity given by the product ε0εr is equivalent to the dielec-
tric coefficient ε33. For brevity, this coefficient is also
sometimes used to represent the relative permittivity,
as in Fig. 5 above.

The nonlinear dielectric behaviour under an alter-
nating electric field can still be represented by an ex-
pression of the form given in Equation 6 if the relative
permittivity becomes a function of field amplitude E0.
Also, the dielectric loss that gives rise to a phase shift
between D and E can be accommodated by consider-
ing εr as the complex quantity ε∗

r , as described above.
Then, we can write:

D∗(t) = ε0ε
∗
r E∗(t) (7)

where E∗(t) = E0(cos ωt + i sin ωt) = E0eiωt (8)

Most of the early studies of nonlinearity in ferroelectric
ceramics focused on the value of the threshold field as a
function of composition, ageing time and temperature,
since this represented a boundary between near-linear
behaviour at low fields and the onset of higher losses
and nonlinearity at high fields. Less attention was paid
to the form of the ε′

r-E0 relationship or tan δ-E0 re-
lationship, although some of the results obtained for
soft PZT ceramics appeared to show an almost linear
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Figure 8 Electric field dependence of the dielectric coefficients ε11 and
ε33 for soft PZT, after Li et al. [15].

increase in ε′
r with increasing field amplitude above Et,

as shown in Fig. 8.
Robels et al. demonstrated the strong dependence of

the dielectric nonlinearity on doping with acceptors, for
both barium titanate and PZT-based ceramics [18]. The
presence of acceptor dopants reduced the nonlinear di-
electric coefficients and resulted in materials that were
generally more stable under high field conditions. It
was found that the nonlinear behaviour for both ε′

r and
ε′′

r could be approximated by a polynomial function:

εr (E0) = εr (0) + aE2
0 − bE4

0

with a′, a′′, b′, b′′ > 0 (9)

They also observed that for acceptor-doped ferroelec-
tric ceramics the nonlinear coefficients all decreased
significantly during ageing. Thus, it is evident that the
pinning effect of the dipolar defects in acceptor-doped
ferroelectrics also serves to restrain the large-scale fer-
roelectric domain wall motion that gives rise to nonlin-
earity, effectively causing a ‘linearising’ effect during
ageing [18].

This removal of dielectric nonlinearity during ageing
was also demonstrated clearly in our own studies of the
P-E relationships of acceptor-doped ferroelectric ce-
ramics in the intermediate region between the threshold
field and the coercive field [19]. For example, the P-E
loops given in Fig. 9 illustrate the reduction in dielec-
tric permittivity (approximately given by the average
gradient of the loop) and the almost complete removal
of hysteresis and loss during ageing of a cobalt-doped
BaTiO3 ceramic at 60 ◦C. The corresponding ε′

r-t and
ε′′

r -t curves measured over a range of field amplitudes
are shown in Fig. 10.

The exact form of the ε′
r-E0 relationship in ferro-

electric ceramics was placed under greater scrutiny
during the late 1990s following studies of the direct
piezoelectric effect by Damjanovic et al., who demon-
strated (see Section 2.3 below) a close correspondence
to the classical Rayleigh Law in ferromagnetics, first
reported in 1887 [20]. The Rayleigh Law applied to the
dielectric properties of ferroelectric ceramics can be

Figure 9 P-E hysteresis loops obtained for cobalt-doped BaTiO3

ceramics during ageing at 60 ◦C (E0 = 0.5 kV mm − 1), after Hall and
Ben-Omran [19].

(a)

(b)

Figure 10 Ageing of dielectric properties for cobalt-doped BaTiO3

ceramics at 60 ◦C, measured at various intermediate field levels (a) ε′
r

and (b) ε′′
r , after Hall and Ben-Omran [19].

expressed as:

ε′
r (E0) = ε′

r (0) + αd E0 (10)

and D0(E0) = ε0
(
ε′

r (0)E0 + αd E2
0

)
(11)

where αd = constant (dielectric Rayleigh coefficient).
Here, ε′

r(0) is a field-independent term which is domi-
nant at low fields and represents a combination of the
intrinsic ionic response together with the contribution
from reversible domain wall vibration. The term αd E0
represents a contribution to ε′

r from larger scale irre-
versible domain wall translation processes, which is
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Figure 11 Field dependence of dielectric coefficients ε′
r and ε′′

r for PC5H
soft PZT ( f = 20 Hz), after Hall and Stevenson [21].

clearly dependent on the field amplitude E0. It was re-
ported previously that both ε′

r and ε′′
r for soft PZT ce-

ramics were almost linear functions of field amplitude
E0, for E0 < Ec (where Ec = coercive field), showing a
good fit to expressions of the form given in equation 10.
The measured relationships are shown in Fig. 11 [21].

Lord Rayleigh also made the observation that the
B-H (magnetic induction-applied magnetic field) loops
in the region below the coercive field could be approx-
imated by 2 parabolic functions, the gradient of which
at the loop tips was equal to the initial (low field) per-
meability [20]. This led to the second Rayleigh rela-
tion, which for a ferroelectric ceramic can be expressed
as:

P = ε0
(
[ε′

r (0) + αE0]E ± (α/2)
(
E2

0 − E2)) (12)

The expression given in Equation 12 in principle en-
ables a simulation of the complete P-E relationship for
a ferroelectric, given only 2 parameters, α and ε′

r(0).
The simulated loops for soft PZT, constructed in this
manner using the experimentally determined Rayleigh
coefficient α, are shown in Fig. 12. It is clear from
this figure that the simulation provides a good fit to
the measured loop at E0 = 200 V mm− 1, but there is a
discrepancy between the measured and calculated data
that becomes more evident with increasing E0. This
discrepancy seems to be associated with the asymme-
try of the measured P-E loops, which arises from the
polar nature of the specimens.

(a)

(b)

Figure 12 Comparison of calculated and experimentally determined
P-E loops for PC5H at field amplitudes of (a) 0.2 kV mm− 1 and
(b) 0.6 kV mm− 1, after Hall and Stevenson [21].

The second Rayleigh relationship, Equation 12, also
leads to expressions for the hysteresis loss WH and ε′′

r ,
as follows:

WH (E0) = πε0ε
′′
r E2

0 (13)

ε′′
r (E0) = 4

3π
αE0 (14)

The εr
′′(E0) values calculated according to Equation 14

were all slightly less than those determined experimen-
tally, as shown by the dashed line in Fig. 11. Neverthe-
less, a near-linear ε′′

r -E0 relationship was still evident,
but with a slightly higher gradient than expected.

At this stage, it is clear that the validity of the thresh-
old field type of nonlinear dielectric behaviour, ob-
served by Lewis and Hagemann amongst others [2, 16],
needs to be considered in comparison with Rayleigh
behaviour and the quadratic relationship described by
Robels. For this reason, wide-ranging studies of the
nonlinear dielectric behaviour of both soft and hard
piezoceramics were carried out by the author [17, 21].
Careful attention was paid to the possible disturbing
influence of continuous high field AC drive, in order to
avoid complications induced by field-forced deageing
phenomena.

It was found that in certain hard PZT ceramics, par-
ticularly Ferroperm types PZ26 and PZ28, a very clear
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Figure 13 Schematic view of field dependence of dielectric permittivity
in ferroelectric ceramics over a wide range of field strength. Data points
are for Ferroperm PZ26 hard PZT ceramic, after Hall and Stevenson
[21].

distinction could be made between a low field region
(ε′

r almost constant), an intermediate Rayleigh region
(ε′

r increasing proportionally to E0), and a high field
region where domain switching processes were clearly
evident. The dependence of ε′

r on E0 within these differ-
ent regions is illustrated in Fig. 13, which incorporates
some of the data obtained from measurements on PZ26
hard PZT ceramics.

It is proposed that this curve represents a general
form of nonlinear dielectric behaviour that should be
exhibited to a greater or lesser extent by all ferroelec-
tric ceramics. In soft PZT, the threshold field Et is so
low that the low field region is almost indistinguish-
able from the Rayleigh region, unless the properties
are measured very carefully over a range of field am-
plitudes around Et [17].

In contrast, for acceptor-doped hard ferroelectric ce-
ramics the Et values can be quite high (∼300 V mm−1)
and under those circumstances some large-scale do-
main wall translation (which is thought to be the ori-
gin of Rayleigh behaviour) may occur even below Et,
giving rise to a blurring of the boundary between the
low-field and Rayleigh regions. Similarly, the boundary
between the Rayleigh and high field regions could also
be blurred due to an overlap of domain wall translation
and domain switching processes. The overall result is
a smoothly varying ε′

r-E0 relationship with a gradually
increasing slope, which yields the quadratic form de-
scribed by Robels et al.

Finally, it is interesting to consider whether some of
the concepts developed by Arlt et al. to describe the
domain wall contributions to the low field properties
of ferroelectric ceramics can be extended to the high
field nonlinear regime. In particular, the direct propor-
tionality of the domain wall contributions to the real
and imaginary parts of dielectric permittivity, accord-
ing to Equation 5, can be investigated by plotting the
ε′

r-ε
′′
r relationship, but measured as a function of field

amplitude rather than ageing time.
It is found that a very good linear ε′

r-ε
′′
r relationship

can usually be established, as shown in Fig. 14, even
when the individual ε′

r-E0 and ε′′
r -E0 relationships are

distinctly nonlinear. These results support the view that
the slight increases in ε′

r and ε′′
r that are often observed

in the low-field region can be attributed to the onset
of domain wall translation and are not due to a com-

(a)

(b)

Figure 14 (a) ε′
r-E0, ε′′

r -E0 and (b) ε′
r-ε

′′
r relationships for Morgan

Matroc PC4D hard PZT ceramic, after Hall [22].

pletely separate polarisation mechanism. A reduction
in the gradient of the ε′

r-ε
′′
r relationship at high fields

is often observed, indicating the onset of a more lossy
polarisation mechanism, which can be identified as fer-
roelectric domain switching [23]. Therefore, it is evi-
dent that the ε′

r-ε
′′
r plot can be employed to distinguish

between different lossy polarisation mechanisms.

2.3. Piezoelectric nonlinearity
Relatively few studies of nonlinearity in the piezoelec-
tric properties of ferroelectrics were published until re-
cently. Some earlier publications investigated the effect
of a static mechanical load or an electric DC bias field
on the dielectric and piezoelectric properties, as will
be discussed in Section 2.6 below. Also, the genera-
tion of higher harmonic signals through dielectric or
piezoelectric nonlinearity was reported by several au-
thors (see Section 2.5). However, the effect of changing
the amplitude of an applied AC pressure (for the direct
piezoelectric effect) or the amplitude of the AC elec-
tric field (for the converse piezoelectric effect) received
relatively little attention. This can be attributed to diffi-
culties in measurement, since it is not straightforward
to achieve a well-controlled AC pressure signal, as is
required for studies of the direct piezoelectric effect.
Nor is it an easy matter to accurately measure the small
displacements associated with electric field-induced
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strains in piezoelectric materials at sub-switching field
levels.

Damjanovic and Demartin throughly investigated
the nonlinear characteristics of the direct piezoelec-
tric effect in ferroelectric ceramics, using a purpose-
built measurement system in which a sinusoidal time-
dependent stress was applied along the polar axis of
certain piezoelectric ceramics [24–26]. This unique
system enabled the determination of the d33 coefficient,
through the direct piezoelectric effect, over a wide range
of alternating pressure amplitude (0 to 12 MPa) and fre-
quency (0.02 to 40 Hz). The influence of static pressure
in the range 0 to 15 MPa was also investigated.

It was found in most cases that a linear increase in
the d33 coefficient could be observed as a function of
the amplitude of the applied alternating pressure X0,
according to the following relation:

d33(X0) = dinit + αdp X0 (15)

and Q0(X0) = dinit X0 + αdp X2
0 (16)

where dinit is the initial piezoelectric charge coefficient
measured at low stress, αdp is the Rayleigh coefficient
associated with the direct piezoelectric effect, and Q0
is the stress induced surface charge density which is
equivalent to the dielectric displacement D0. The non-
linear component was very pronounced in some mate-
rials (e.g. soft PZT ceramic) but less so in others (e.g.
strontium bismuth titanate ceramic), as shown in Fig. 15
[25].

(a)

(b)

Figure 15 Piezoelectric coefficient d33 and piezoelectrically induced
charge density Q0 as a function of the amplitude of alternating pres-
sure X0 for (a) PZT and (b) strontium bismuth titanate ceramics, after
Damjanovic and Demartin [25].

Figure 16 The longitudinal d33 piezoelectric coefficient of soft PZT
ceramic as a function of the frequency of the alternating pressure, at
different amplitudes of the average alternating pressure Xmax , after
Damjanovic [27].

The hysteretic Q-X (charge-stress) relationship
showed a close correspondence to Rayleigh’s second
relationship, which for the direct piezoelectric effect
can be expressed as:

Q = (dinit + αdp X0)X ± (αdp/2)
(
X2

0 − X2) (17)

By analogy with the Rayleigh Law in ferromagnet-
ics, the authors concluded that the stress-dependent
term αdp X0 was due to a mechanism involving the
translation of non-180◦ ferroelectric domain walls (90◦
for tetragonal or 71/109◦ for rhombohedral ceramics)
across an array of pinning defects. It was recognised
by Damjanovic that a hysteretic domain wall transla-
tion mechanism involving interaction of the moving
domain wall with pinning centres should also result in
a logarithmic dependence of the dielectric permittivity
or piezoelectric coefficient on frequency f , as shown
in Fig. 16 [27].

By analysing the stress and frequency dependence of
d33, it was demonstrated that both the reversible dinit and
irreversible αdp X0 contributions to d33 were frequency
dependent, according to the following relationships:

dinit(ω) = d0 + d ln(1/ω) (18)

α(ω) = a0 + a ln(1/ω) (19)

More general relationships were also derived to de-
scribe the dependence of d33 on both ω and X0:

d33(ω, X0) = G0(X0) + G(X0) ln(1/ω) (20)

with G0(X0) = g0 + f0 X0 (21)

and G(X0) = g + f X0 (22)

Using this method, it was possible to develop a nu-
merical model for the direct piezoelectric effect, in-
volving just 4 fitting parameters. The values of these
constants for a soft PZT ceramic were found to be g0 =
249 pC N−1, f0 = 13.2 pC N−1 MPa−1, g = 1.8 pC N−1

and f = 0.59 pC N−1 MPa−1. A similar approach could
be adopted to describe the dielectric behaviour and/or
the converse piezoelectric effect in ferroelectrics,
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provided that an analogous field and frequency depen-
dence of the relevant dielectric and piezoelectric coef-
ficients could be demonstrated. However, it should be
noted that the effect of simultaneous variations in stress
and electric field have not yet been considered.

Sherrit et al. observed qualitatively similar variations
in the d33 coefficient of soft PZT ceramics, measured
through the direct piezoelectric effect, as functions of
the amplitude and frequency of the applied stress [28].
In their case, a quasistatic measurement method was
employed in which a gradually increasing or step stress
was applied along the polar axis of Channel 5804 PZT.
The measured d33 value was observed to increase from
around 200 to 430 pC N−1 as the stress increased from 0
to 70 MPa. The time-dependence of the domain switch-
ing process was observed as a logarithmic decay of the
depolarisation current. Sherrit et al. also observed a
strong temperature dependence of d33, which was fit-
ted to an Arrhenius relation with an activation energy
in the range 0.2 to 0.7 eV, depending on the material.

Nonlinearity in the converse piezoelectric effect has
been reported in several recent publications [29–32].
Mueller et al. investigated the nonlinear dielectric and
piezoelectric behaviour of soft PZT ceramics, finding
that the experimental data could be described using a
power law relationship [29, 30]:

m(E0) = m0 + A[(E0 − Et )/Et ]
φ (23)

where m is a dielectric or piezoelectric coefficient, Et is
a threshold field, and φ is an exponent. The value of φ

for a soft PZT ceramic was found to be approximately
1, corresponding to the Rayleigh Law, when the electric
field was parallel to the polar axis (i.e. for ε33 and d33).
In contrast, a value of φ ≈ 1.2 was found for ε11 and
d15 from measurements made using shear-mode piezo-
electric devices. The results obtained for the dielectric
and piezoelectric coefficients showed a good fit to the
power law, as shown in Fig. 17.

It was also noted by Mueller that the lossy imaginary
components of ε and d could be represented by sim-
ilar power law expressions. Furthermore, the ratio of
the imaginary to the real parts of the nonlinear coeffi-
cients remained approximately constant as a function of
increasing field amplitude. The corresponding ε′-ε′′ or
d ′-d ′′ plot should be linear, as was noted above (Fig. 14).

Kugel and Cross observed a linear dependence of
ε33 and d31 on field amplitude E0 for various soft PZT
ceramics [31]. A striking correspondence was noted be-
tween the field-dependent dielectric and piezoelectric
coefficients, as shown in Fig. 18, indicating their com-
mon origin in 90◦ ferroelectric domain wall translation.
A similar linear dependence of ε33, d33 and d31 on field
amplitude was also noted by Sherrit et al. [32].

The resulting Rayleigh Law for the converse piezo-
electric effect can be written as:

d(E0) = dinit + αcp E0 (24)

and X0(E0) = dinit E0 + αcp E2
0 (25)

The direct proportionality between field-induced dis-
placement D and strain x was also evident in the

(a)

(b)

Figure 17 (a) AC field dependence of dielectric and piezoelectric co-
efficients of soft PZT ceramic (b) data fitted to power law relationship
according to Equation 23, after Mueller and Zhang [30].

x-D relation reported by Kugel and Cross, which re-
mained linear even when the individual x-E and D-E
relationships were distinctly nonlinear and hysteretic.
These results indicate that the nonlinear piezoelec-
tric coefficients could potentially be derived from the
nonlinear dielectric coefficients, providing a possible
means of reducing the number of parameters required
to describe the nonlinear dielectric and piezoelectric
behaviour.

2.4. Elastic (mechanical) nonlinearity
Nonlinearity in the elastic properties of ferroelectric
ceramics has received relatively little attention, par-
ticularly for applied stresses in the range below that
required to cause irreversible depoling, sometimes re-
ferred to as the coercive stress Xc. Early studies demon-
strated that a compressive stress applied parallel to the
polar axis could induce a degradation of the dielec-
tric and piezoelectric properties, due to ferroelastic do-
main rearrangement [33]. The sensitivity to stresses ap-
plied in a direction perpendicular to the polar axis was
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Figure 18 Relative field dependencies of ε33 and d31, derived from the
amplitudes of the fundamental harmonic components of the dielectric
displacement and strain signals, for 3203 HD soft PZT ceramic at 100 Hz,
after Kugel and Cross [31].

significantly smaller, presumably because the degree of
stress-induced domain reorientation was less [34].

The development and commercial application of
piezoelectric actuators has led to a renewed interest
in nonlinearity in the elastic properties of piezoelec-
tric ceramics. It is recognised that both residual and
field-induced stresses in multilayer actuators play a de-
ciding role in the fatigue characteristics and ultimate
lifetime of practical devices. Cao and Evans carried out
a detailed study of elastic nonlinearity in a range of
ferroelectric (piezoelectric), relaxor ferroelectric (elec-
trostrictive) and antiferroelectric (phase change) ceram-
ics [35]. It was observed that the elastic properties of
both soft and hard PZT ceramics were distinctly non-
linear when the applied compressive stress exceeded
a level ∼20 MPa, as shown in Fig. 19. A permanent
change in strain on removal of the load was readily ap-
parent in soft PZT ceramics, due to irreversible ferroe-
lastic domain switching. Hard PZT ceramics showed a
more complete strain recovery, but a permanent defor-
mation became evident for stresses exceeding 200 MPa.

It was found that the results obtained for the devi-
atoric plastic strain x ′

p could be described in terms of
a power law expression, which was similar to that ob-
served in other ceramic systems exhibiting phase trans-
formation behaviour:

X ′/X ′
0 = (x ′

p/x ′
0)a + (x ′

p/x ′
0)b (26)

where a and b are empirical power law coefficients,
a < 1 and b > 1, X ′

0 is a reference stress and x ′
0 is a

reference strain.
The mechanical depolarisation behaviour of the spec-

imens, measured by means of the electric charge
released on application of the stress, gave a close corre-

Figure 19 Stress-strain curves for soft and hard PZT ceramics subjected
to stress along the polar axis, after Cao and Evans [35].

spondence to the purely elastic results. Thus, it was con-
firmed that the observed elastic nonlinearity could be at-
tributed to the reorientation of ferroelectric-ferroelastic
domains.

The origin of the ‘memory’ effect in hard PZT ce-
ramics, in which the original state of strain and of polar-
isation could be recovered even after a high degree of
mechanical depolarisation, was not explained by Cao
and Evans. Subsequently, Schäufele and Härdtl recog-
nised that this effect was most likely associated with
the presence of oriented dipolar defect associates in the
hard PZT ceramics, which were relatively unaffected
by the mechanical domain rearrangement process for
short term loading/unloading experiments [36]. The po-
sition and orientation of these defects facilitates the re-
covery of the original domain configuration, provided
that the duration of the loading/unloading experiment
is short relative to the relaxation time τ of the dipolar
defects. The ferroelectric domain and dipolar reorien-
tation processes for a hard PZT ceramic due to stresses
applied along the polar axis are illustrated schemati-
cally in Fig. 20.

It was confirmed that the remanent strain and depo-
larisation in hard PZT ceramics were strongly depen-
dent on both the maximum applied stress and the dura-
tion of the loading experiment. For example, for a hard
PZT ceramic subjected to a load of 400 MPa the rema-
nent strain and polarisation obtained for a compression
time of 3600 s (5.3 × 10−3 and 323 mC m−2 respec-
tively). were more than an order of magnitude greater
than those obtained for 1 s (0.3 × 10−3 and 10 mC m−2

respectively).
The time dependence of mechanical depolarisation

in ferroelectric ceramics was investigated further by
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Figure 20 Schematic illustration of time-dependent ferroelectric domain and dipolar reorientation processes in hard PZT due to stress applied along
the polar axis.

Heilig and Härdtl, who demonstrated that the charge
released in response to a step function load increased
in a logarithmic manner with time under stress [37]. The
following empirical function was used to described this
behaviour:

Q(t) = Qi + Q0(t/t0)α (27)

The resulting charge-time curves for a soft PZT ce-
ramic are illustrated in Fig. 21. It was supposed that
this gradual release of charge was characteristic of a
time dependent ferroelectric domain switching or do-
main wall translation process.

Figure 21 Response of the charge on stress steps for soft PZT, after
Heilig and Härdtl [37].

The response time of this effect spanned the range
from 0.01 s (the resolution of the apparatus) to at least
100 s, which was noted to be several orders of magni-
tude larger than the domain switching times of the order
of a few µs or less that had previously been reported
for the switching of individual domains in ferroelectric
single crystals or thin films. However, it can be noted
that the response times measured by Heilig and Härdtl
[37] are of the same order of magnitude as those associ-
ated with the domain wall translation process described
by Damjanovic [27].

The influence of the ceramic composition, in terms
of the Zr concentration in PZT, and the presence of
an electric bias field on the elastic nonlinearity were
also reported by Schäufele and Härdtl [36]. It was
shown that both the coercive stress Xc and the coercive
field Ec reduced as a function of increasing Zr con-
centration, exhibiting minimum values near the mor-
photropic phase boundary (∼56% Zr). It was also con-
firmed that an electric bias field applied parallel to the
polar axis acted to stabilise the state of remanent po-
larisation, resulting in an increase in the coercive stress
Xc. The dependence of Xc on the bias field Eb yielded
a near-linear relationship, as shown in Fig. 22, which
could be explained on the basis of the energy den-
sity required to initiate ferroelectric domain switching
wds:

Xcx + Eb(−�P) = wds (28)
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(a)

(b)

Figure 22 Linear dependence of coercive stress on electric field applied
to (a) soft and (b) hard PZT with different Zr concentrations (for soft PZT:
♦ = 0.54�= 0.56 ◦ = 0.58, for hard PZT: x = 0.52 ∗ = 0.54 + = 0.56),
after Schäufele and Härdtl [36].

where x = strain and �P = the change in polarisation
associated with domain switching. Rearrangement of
this equation yields a linear relationship between Xc
and Eb with slope �P/x :

Xc = �P

x
Eb + wds

x
(29)

A qualitative agreement was established between the
ratio �P/x measured from the gradient of the Xc-
Eb curve and the values of remanent depolarisation
and strain measured directly from the stress-strain and
stress-depolarisation curves.

2.5. Harmonic generation through
nonlinear dielectric and
piezoelectric properties

The nonlinear nature of the dielectric and piezoelec-
tric properties of ferroelectric ceramics often becomes
evident through the generation of higher-order elec-
tric current or strain/displacement signals from a pure

Figure 23 Change of mechanical compliance s33 for various PZT ce-
ramics as a function of the mean squared strain, after Gonnard et al.
[39].

sinusoidal time dependent electric field E = E0 sin(ωt).
This effect is particularly important for acoustic piezo-
electric transducers operating close to resonance (or
antiresonance), since a significant proportion of the
electrical input energy can be wasted in the generation
of unwanted vibrational modes [38]. Fourier analysis
techniques can be used to detect the harmonic compo-
nents of the output signal and subsequently to relate
their magnitude, phase and frequency to the nonlinear
material coefficients.

Gonnard et al. used this method to determine the high
power resonance characteristics of hard PZT longitu-
dinal piezoelectric resonators [39]. By combining the
electrical impedance characteristics measured around
the resonance with a nonlinear model of a piezoelectric
resonator, it was possible to derive the change in elas-
tic compliance s33 as a function of strain, as shown in
Fig. 23.

The generation of higher order harmonic signals in
the time dependent field-induced strain and dielectric
displacement wavforms was also analysed by Kugel
and Cross, who studied the longitudinal dielectric dis-
placement D3 and the transverse strain x1 of soft PZT
ceramics in a bimorph cantilever configuration [31].
Under stress-free conditions, the nonlinear dielectric
and piezoelectric relations were expressed as:

D3 = εX
33 E + εX

333 E2 + εX
3333 E3 + · · · (30)

x1 = d31 E + R331 E2 + R3331 E3 + . . . (31)

At first sight, it might appear that these equations
have the same form as the Rayleigh Law, given above
in equations 10 and 25, although extending to higher
order terms in E. However, it is important to recognise
that this is not the case since these equations, which are
derived from the thermodynamic approach (see Section
3 below) relate the instantaneous displacement or strain
(D, x) to the instantaneous electric field E . In contrast,
the Rayleigh Law expresses the relationship between
the amplitude of the displacement or strain waveform
(D0, x0) and that of the electric field waveform E0. It is
shown below that the amplitudes and phases of the har-
monic components derived from the second Rayleigh
relation are very different to those found from the ther-
modynamic relations.

By substituting the time dependent expression for E
into Equations 30 and 31, the Fourier components of
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the dielectric displacement D3 and strain x1 waveforms
can be found as:

D(1)
3 =

(
εX

33 + 3

4
εX

3333 E2
0 + · · ·

)
E0 sin(ωt) (32)

D(2)
3 =

(
1

2
εx

333 E0 + · · ·
)

E0 sin

(
2ωt − π

2

)

→D(2)
3 =

(
1

2
εx

333 E0 + · · ·
)

E0 sin

(
2ωt − π

2

)
(33)

D(3)
3 =

(
1

4
εX

3333 E2
0 + · · ·

)
E0 sin(3ωt − π ) (34)

X (1)
1 =

(
d31 + 3

4
R3331 E2

0 + · · ·
)

E0 sin(ωt) (35)

X (2)
1 =

(
1

2
R331 E0 + · · ·

)
E0 sin

(
2ωt − π

2

)
(36)

X (3)
1 =

(
1

4
R3331 E2

0 + · · ·
)

E0 sin(3ωt − π ) (37)

These equations are derived in a straightforward man-
ner by considering the expansions of sin2(ωt) and
sin3(ωt) in terms of sin(2ωt) and sin(3ωt) respectively.
It is apparent from Equations 32 and 35 that, accord-
ing to this approach, the fundamental components of ε33
and d31 should exhibit a dependence on the square of the
electric field amplitude E2

0 , whereas the Rayleigh Law
describes a dependence on E0. Kugel and Cross demon-
strated that these equations, derived from the thermo-
dynamic theory, gave a very poor fit to the experimental
data [31].

For this reason, an alternative approach was proposed
based on a hysteretic model of the D-E and x-E rela-
tionships. This led to more complex expressions for
the magnitudes of the harmonic components of x and
D, but gave a much better fit to the experimental data,
as shown in Fig. 24. The authors concluded that such
a hysteretic model was necessary to describe the ob-

Figure 24 Results of fitting the hysteretic model to experimental data
for the amplitudes of the first 3 harmonics of D3 for 3203HD soft PZT
ceramic, after Kugel and Cross [31].

served results and that a polynomial function of the
form given in Equations 30 and 31 was clearly inad-
equate. The hysteretic model developed by Kugel and
Cross was found to reduce to Rayleigh’s second rela-
tionship, Equation 12, when higher order terms were
omitted [31].

Ishii et al. carried out a study of harmonic generation
in which the drive current in a piezoelectric transducer
was controlled to provide a pure sinusoidal current den-
sity, J = J0sin(ωt) [40]. In this case, material nonlin-
earities led to the generation of harmonic voltage sig-
nals, explained according to the following polynomial
relation:

E = −hx + β ′′ J + γ ′ J 2 + ξ ′ J 3 (38)

where h is a piezoelectric voltage coefficient and β ′′,
γ ′ and ξ ′ are constants related to the linear and nonlin-
ear dielectric coefficients. The use of this relationship
appeared to provide a good fit to the experimental data.

2.6. The influence of static electric and
elastic fields on nonlinearity

Numerous studies have been carried out to determine
the influence of electric bias fields and static stress on
the dielectric properties of ferroelectrics. The results
of such investigations are often interpreted in terms
of phenomenological thermodynamic theories of ferro-
electric phase transformations [41–43]. These usually
provide a good understanding of the observed phenom-
ena, including the change in dielectric permittivity or
ferroelectric Curie temperature with increasing stress or
electric field. The influence of a static electric or elastic
field on the nonlinear properties of ferroelectric ceram-
ics is less well characterised or understood. A diverse
range of behaviour can be observed, depending on the
composition/structure of the material under investiga-
tion, the orientation of the applied field with respect to
the polar axis (positive or negative bias), and the time
scale over which the field is applied or removed.

Butler and Rolt summarised the practical conse-
quences of combined static stress and alternating elec-
tric drive on the operating characteristics of high power
SONAR transducers, with particular emphasis on hard
PZT ceramics [44]. They concluded that operation at
field amplitudes up to 800 V mm−1 and compressive
stresses of 100 MPa were achievable in practical trans-
ducers. Higher levels of stress or AC field would in-
evitably lead to unacceptable changes in the transducer
properties (degradation of piezoelectric activity, detun-
ing, high dielectric losses etc.).

One of the first detailed studies of the effects of static
compressive stress on the properties of PZT ceramics
was reported by Krueger [33]. It was found that repeated
cycling of hard PZT ceramics at stresses ∼100 MPa led
to a partial but permanent depolarising effect, with a
consequent reduction in the d33 coefficient. The dielec-
tric permittivity measured at both low and high electric
field levels increased significantly on the application
of stress, as shown in Fig. 25a. The increase in the loss
tangent was even more dramatic, causing some concern
over potential heat generation in high power transduc-
ers. It was noted by Krueger that the apparent high tan
δ value was most likely due to the ‘deageing’ effect
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(a)

(b)

Figure 25 The effect of static stress and alternating electric drive field
on the dielectric properties of (a) hard and (b) soft PZT ceramics, after
Krueger [33].

of the applied stress and that subsequent ageing under
stress should lead to improved tan δ-E0 characteristics.
This also served to highlight the fact that exposure to
any large mechanical, electrical or thermal disturbance
in service could cause a similar increase in tan δ.

The effect of stress on the high field dielectric prop-
erties of a soft PZT ceramic was also reported as shown
in Fig. 25b. In this case, a drastic reduction in d33 was
observed above a stress ∼30 MPa, indicating the oc-
currence of a permanent depolarisation process. The
high field dielectric measurements on soft PZT ceram-
ics showed a significantly greater sensitivity to field am-
plitude, but the applied stress gave rise to a reduction
in both εr and tan δ (as opposed to the increase noted
for hard PZT). Clearly, the domain pinning effects in
soft PZT ceramics are much weaker that those in hard
PZT, with the result that the stress-induced deageing
effect does not seem to be significant. Instead, the ap-
plied stress appears to act to reduce the ferroelectric
domain wall mobility, resulting in a marked reduction
in the gradient of the εr-E0 and tan δ-E0 curves.

Krueger also made the important practical point that
the thin disks required for the high field measurements
were not well suited for the application of a pure axial
compressive stress, since lateral clamping would in-
evitably result in opposing radial stresses and hence
introduce a large hydrostatic component. Therefore,
in certain other investigations where thin disk speci-
mens have been employed for high field measurements
under a nominal uniaxial stress, the possible presence
of a significant hydrostatic component should not be
discounted.

The stress-induced deageing effect in hard acceptor-
doped PZT ceramics has also been described in several
recent publications [45–47]. In our own work, it was
found that both the dielectric permittivity and loss of
a hard PZT ceramic increased significantly on the ap-
plication of a compressive stress, but that ageing un-
der stress led to logarithmic reductions in ε′

r and ε′′
r

with time, as shown in Fig. 26 [46]. Comparable in-
creases in ε′

r and ε′′
r were observed on removal of the

stress, which can also be interpreted in terms of a stress-
induced deageing effect caused by the rearrangement of
ferroelectric domains relative to a fixed array of dipolar
defects, as illustrated in Fig. 20 above.

The field dependence of permittivity and loss un-
der stress showed a very similar form to that described
by Krueger (Fig. 25). Further analysis of the data, in
terms of the ε′

r-ε
′′
r relationship obtained as a function

of field amplitude (Fig. 27) indicated that the low field
permittivity of these hard PZT ceramics (obtained by
extrapolation to zero loss) did increase significantly un-
der stress.

A complete explanation of the differing behaviour
of soft and hard PZT ceramics under stress has not yet
been presented, although it is clear that the arguments
must include consideration of the effects of stress on the
intrinsic ionic polarisation mechanism, as well as those
due to reversible and irreversible ferroelectric domain
wall motion [45–47]. The influence of residual (inter-
granular) stress should also be accounted for, as was
discussed by Damjanovic and Demartin [24, 26]. They
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Figure 26 Variation in high field dielectric coefficients of PC8 hard
PZT ceramics during ageing under various levels of applied compressive
stress (E0 = 1 kV mm−1), after Hall et al. [46].

Figure 27 ε′
r-ε

′′
r plots obtained as a function of field amplitude at various

applied stresses for PC8 hard PZT ceramics (E0 = 1 kV mm−1, ageing
time = 20 hours), after Hall et al. [46].

noted in their work on the direct piezoelectric effect
in barium titanate and PZT ceramics that a superim-
posed bias pressure led to an increase in the ‘threshold
pressure’ required to initiate domain wall motion and a
reduction in the Rayleigh coefficient αdp, representing
the gradient of the d33-X0 relationship (Fig. 28). This
indicates that the application of a static pressure tends
to inhibit the domain wall contributions to the piezo-
electric coefficient, in common with the effects noted
above for the dielectric properties.

Furthermore, it was found that the influence of the
static pressure was much less pronounced for tetrag-
onal PZT (in comparison with rhombohedral PZT)
and for fine-grained barium titanate (in comparison
with coarse-grained barium titanate). The results were
explained in terms of the presence of a higher resid-
ual stress in the tetragonal PZT and fine-grained bar-
ium titanate ceramics, resulting from the paraelectric-

Figure 28 d33 as a function of the amplitude of ac pressure for rhom-
bohedral (63/57) and tetragonal PZT ceramics doped with 4 at% Nb at
8 and 15 MPa dc pressure, after Damjanovic and Demartin [26].

ferroelectric phase transformation. This residual stress
acts to restrict the ferroelectric domain wall motion in
such materials, since domain wall movement requires
a further increase in elastic energy. The application of
an external static pressure will certainly cause a further
reduction in domain wall mobility, but to a lesser extent
than would be the case for materials in which domain
wall motion normally occurs more easily.

The application of a positive electric bias field paral-
lel to the polar axis of a piezoelectric ceramic specimen
is expected to cause a reduction in the high field di-
electric and piezoelectric coefficients, due to a reduced
domain wall mobility, in a similar manner to the ef-
fects described above for a static compressive stress.
In contrast, a negative electric field applied in the di-
rection antiparallel to the polar direction should cause
a destabilising effect, thereby increasing the high field
dielectric and piezoelectric coefficients. Schaufele and
Hardtl have already confirmed that an electric bias can
be employed to modify the mechanical depolarisation
behaviour of PZT ceramics, as noted above, with a pos-
itive bias acting to increase the coercive stress Xc [36].

The stabilising effect of a positive DC bias field has
been confirmed in our own work on soft PZT ceramics,
as shown in Fig. 29 [48]. Here, it is apparent that the
dielectric loss in soft PZT ceramics, measured at high
fields, can be reduced remarkably by the application
of a bias field. However, the remaining dielectric loss
under bias is still too high for such materials to be con-
sidered for high power applications. Furthermore, the
piezoelectric coefficients are also likely to be reduced
in the presence of a positive bias field.

Perrin et al. have recently shown that the application
of a negative bias field causes an increase in ε33 and d33
for both soft and hard PZT ceramics, as shown in Figs 30
and 31 [49]. The effect of a positive bias field for the
hard PZT was less straightforward in that the dielectric
permittivity ε33 was found to reduce slightly while d33
increased a little (Fig. 31). It is likely that the expected
reduction in these coefficients due to the change in do-
main wall mobility caused by the bias field is obscured
by the deageing effects, which are also induced by the
bias field. This behaviour reflects the observations made
above concerning the influence of static stress on the
dielectric and piezoelectric properties, suggesting that
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(a)

(b)

Figure 29 Variation of dielectric properties of PZ27 soft PZT ceramic
as a function of field amplitude at 30 ◦C, various bias fields (a) ε′

r-E0,
(b) ε′′

r -E0, after Stevenson et al. [48].

(a)

(b)

Figure 30 Dielectric permittivity ε33 as a function of DC bias field for
(a) soft PZT and (b) hard PZT ( f = 1 kHz, E0 = 3 V mm−1), after Perrin
et al. [49].

(a)

(b)

Figure 31 Piezoelectric strain coefficient d33 as a function of DC bias
field for (a) soft PZT and (b) hard PZT ( f = 1 kHz, E0 = 30 V mm−1),
after Perrin et al. [49].

both effects can be understood, at least qualitatively, in
terms of the same underlying mechanisms.

3. Thermodynamic approach
to nonlinear behaviour

3.1. Derivation of linear
constitutive relations

Damjanovic recently provided a thorough review of
the thermodynamic relations in piezoelectric ceramics
[50]. This approach is summarised in the following sec-
tions, in order to highlight the inherent assumptions,
and then extended to encompass nonlinear behaviour
following the method proposed by Joshi [51].

The reversible change dU in internal energy U for an
elastic dielectric subjected to a small change of strain
dxi j and electric displacement dDi is, under isothermal
conditions:

dU = Xi j dxi j + Ei d Di (39)

The Gibbs free energy of a piezoelectric material under
isothermal conditions can be written as:

G = U − Xi j xi j − Ei Di (40)

The resulting change dG in G is given by:

dG = dU−Xi j dxi j −xi j d Xi j −Ei d Di −Di d Ei (41)

Substituting Equation 39 into 41 yields:

dG = −Xi j dxi j−Di d Ei → dG = −Xi j dxi j−Di d Ei

(42)
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It follows that:

xi j = −
(

∂G

∂ Xi j

)
E

and Di = −
(

∂G

∂ Ei

)
X

(43)

In general, for a function f of two independent vari-
ables, say f (x, y), then the total differential d f of f
can be expressed as a Taylor series involving the partial
differentials of f with respect to x and y:

∂3 f

∂3
x

dx3 → ∂3 f

∂x3
dx3

and
∂3 y

∂y3
dy3 → ∂3 f

∂y3
dy3 (44)

In the conventional approach, the Taylor expansions for
strain x and dielectric displacement D are limited to the
first order terms, giving:

dxi j =
(

∂xi j

∂ Xkl

)
E

d Xkl +
(

∂xi j

∂ Ek

)
X

d Ek (45)

and d Di =
(

∂ Di

∂ X jk

)
E

d X jk +
(

∂ Di

∂ E j

)
X

d E j (46)

It is assumed that the partial derivatives can be repre-
sented by the following constants:

SE
i jkl =

(
∂xi j

∂ Xkl

)
E

→ s E
i jkl =

(
∂xi j

∂ Xkl

)
E

(47)

d X
ki j =

(
∂xi j

∂ Ek

)
X

=
(

∂ Dk

∂ Xi j

)
E

= d E
ki j

= piezoelectric charge/strain coefficient

(48)

εX
i j =

(
∂ Di

∂ E j

)
X

= absolute dielectric permittivity (49)

It is usual to take the reference levels of strain and di-
electric displacement as zero and then use the reduced,
or matrix notation which makes use of the symmetry
of the stress and strain tensors. Then, the constitutive
equations can be written in the simplified form given
earlier:

xm = SE
mn Xn + d X

im Ei (1)

Di = d E
im Xm + εX

i j E j (2)

with i, j = 1. . 3 and m, n = 1. . 6.
It should be noted that for Equation 1 the [d] matrix

should be transposed to [d]T in order to conform to
standard matrix algebra. Then, we can write:

[x] = [s E ][X ] + [d]T [E] (50)

xm = SE
mn Xn + d X

im Ei → xm = s E
mn Xn + d X

im Ei (51)

Alternative forms of the constitutive equations can be
derived using other thermodynamic potentials, chosen
with regard to different combinations of independent
and dependent variables (from E , D, x , X ) [50].

3.2. Derivation of nonlinear
constitutive relations

First order nonlinearity in the dielectric, elastic and
piezoelectric properties of piezoelectric ceramics can
be obtained by extending the Taylor series expansion
to include the second order partial derivatives, using the
form of Equation 44. This yields the following expres-
sions for the total differentials of strain and dielectric
displacement:

dxi j =
(

∂xi j

∂ Xkl

)
E

d Xkl +
(

∂xi j

∂ Ek

)
d Ek

+ 1

2

[(
∂2xi j

∂ Xkl∂ Xmn

)
E

d Xkld Xmn +2

(
∂2xi j

∂ Xkl∂ Em

)

× d Xkld Em +
(

∂2xi j

∂ Ek∂ El

)
X

d Ekd El

]
(52)

∂2 Di

∂ Xik∂ Xlm
→ ∂2 Di

∂ X jk∂ Xlm
(53)

By setting the reference values of field-induced dielec-
tric displacement and strain to zero and using the re-
duced matrix notation, Equations 52 and 53 can be writ-
ten in a simpler form as:

kimn Xn Ei → κimn Xn Ei (54)

kimn Xn Ei → κimn Xn Ei (55)

where the nonlinear dielectric, elastic and piezoelectric
coefficients are given by:

s E
mnp =

(
∂2xm

∂ Xn∂ X p

)
E

di jm =
(

∂2xm

∂ Ei∂ E j

)
X

=
(

∂2 Di

∂ Xm∂ E j

)

εX
i jk =

(
∂2 Di

∂ E j∂ Ek

)
X

κimn =
(

∂2xm

∂ Xn∂ Ei

)
=

(
∂2 Di

∂ Xm∂ Xn

)
E

(56)

It is evident from Equation 54 that s E
mnp and di jm rep-

resent first order nonlinearity in the elastic compliance
and piezoelectric strain coefficient respectively. Also,
from Equation 55 εX

i jk and κimn represent first order
nonlinearity in the dielectric permittivity and the piezo-
electric charge coefficient respectively. Note that di jm

and κimn , representing the nonlinear components of the
converse and direct piezoelectric effects respectively,
are not equivalent.

It is apparent that di jm may also be used to repre-
sent the cross-coupling between the nonlinear compo-
nents of dielectric displacement induced by simultane-
ously applied electric field E and mechanical stress X in
Equation 55. Similary, κimn represents cross-coupling
between the nonlinear components of strain in Equa-
tion 54. Potentially, this provides a useful means of
determining these cross-coupling coefficients from a
series of measurements under zero stress (for di jm) or
zero electric field (for κimn), thereby avoiding the need
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for lengthy studies in which both E and X must be con-
trolled simultaneously. It remains to be seen whether
these relationships can be validated in practise.

As noted above (Section 2.5), superficially these rela-
tionships appear to have the same form as the Rayleigh
Law, but in fact do not accurately predict the magni-
tudes of the harmonic components of x and D for a
cyclic stress or electric field waveform.

4. Hysteretic models of nonlinearity
4.1. Hysteresis due to domain wall motion
The traditional approach to modelling hysteretic be-
haviour of materials (ferromagnetic, ferroelastic and
ferroelectric) is a phenomenological one, in that math-
ematical models are sought to describe a range of exper-
imental observations. Ultimately, physical models can
be developed in order to relate key parameters in the
model to physical quantities such as the domain wall
density and mobility, dislocation density etc. Studies of
the Rayleigh Law in ferromagnetic materials provide a
useful illustration of this approach.

Lord Rayleigh first reported in 1887 that the mag-
netic permeability of iron and steel increased linearly
with field amplitude, over a range of field strengths
below the coercive field, as described above [20]. Fur-
thermore, the B-H (magnetic induction-magnetic field)
relationship could be approximated by a combination
of 2 parabolic functions, corresponding to the ascend-
ing and descending branches of the minor hysteresis
loop. These are the first and second Rayleigh relations,
which can be expressed as:

µ(H0) = µ(0) + αH0 (57)

B(H ) = (µ(0) + αH0)H ± α

2

(
H 2

0 − H 2) (58)

The resulting idealised hysteresis loop, given in terms
of the associated magnetisation-field relationship is il-
lustrated in Fig. 32.

This form of hysteretic behaviour was interpreted
by Weiss and Freudenreich [53], and then by Preisach
[54], in terms of an assembly of magnetic regions,
within which the magnetisation could be reversed ei-
ther reversibly or irreversibly. Subsequently, Neel sug-
gested that a more realistic interpretation for a soft
ferromagnetic or ferrimagnetic material would treat

Figure 32 Idealised M-H loop illustrating Rayleigh relations, after
Damjanovic [52].

(a)

(b)

Figure 33 (a) Irreversible and (b) reversible imaginary cycles corre-
sponding to small wall displacements against an opposition represented
by straight lines, after Neel [56].

these irreversible and reversible magnetisation cycles
as imaginary cycles corresponding to successive par-
tial displacements of domain walls, as shown in Fig. 33
[55, 56].

Magnetisation cycles of this type can be categorised
according to the relative values of the critical switching
fields a and b, those with a<b representing reversible
cycles and those with a>b irreversible cycles. By as-
suming a certain statistical distribution of a and b pairs
(actually a uniform distribution of points around the
origin in the a-b plane), it is possible to calculate both
the reversible and irreversible components of magneti-
sation for any given path of the applied field, and hence
to derive the two Rayleigh relations [56]. A similar
approach is used in Preisach-type models, where the
switching events are used to represent the reversal of
magnetisation within collections of bi-stable units [57].

The model developed by Neel served as the basis for
subsequent studies in which closer links were sought
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Figure 34 Schematic illustration of interaction of domain walls with
randomly distributed pinning centres (above) and the corresponding
energy profile associated with the domain wall position (below), after
Damjanovic [62].

between the mathematical form of the model and mea-
surable physical parameters [58]. Microstructural fea-
tures (such as grain size) and dislocation density have
been shown to influence factors such as the initial per-
meability, Rayleigh coefficient and coercive field. The
results of such studies are usually interpreted in terms of
the changes in the random periodic domain wall poten-
tial caused by the presence of microstructural or crystal
defects [59–61].

It is evident from the results presented above that the
nonlinear dielectric and piezoelectric properties of fer-
roelectric ceramics are represented well by the Rayleigh
relations. The range of electric field strength or stress
over which the Rayleigh behaviour occurs corresponds
closely to those experienced in service by piezoelec-
tric actuator materials. The mechanism responsible for
Rayleigh behaviour in ferroelectrics is illustrated in
Fig. 34 [62]. Here, it is supposed that the domain wall
potential can be represented by a periodic function with
a random distribution of barrier heights, due to its in-
teraction with an array of pinning defects. The domain
wall can move reversibly over small distances within
the first potential well surrounding its equilibrium po-
sition. This type of nonhysteretic domain wall vibra-
tion provides a contribution to the dielectric, elastic
and piezoelectric properties even at low field strengths,
as described above (Section 2.1).

A certain ‘thershold field’ Et is required to initiate
large scale domain wall translation across the array of
pinning defects, giving rise to the hysteretic response.
The dielectric, elastic and piezoelectric phenomena as-
sociated with the domain wall translation mechanism
can also be understood in terms of the combination of
reversible and irreversible imaginary cycles described
by Neel.

Boser adapted this approach to describe the dielec-
tric properties of ferroelectrics and showed how certain
measurable parameters such as the initial permittivity,
Rayleigh coefficient and coercive field could be related
to the form of the domain wall potential, or force pro-
file [63]. The origin of the force profile itself was also
derived on the basis of the interaction energies between
point defects and the domain wall. Although only lim-
ited experimental data were available, it did appear that
the Rayleigh coefficient α was inversely proportional
to the defect concentration in Fe-doped barium titanate
ceramic, as was predicted by the model.

Damjanovic [52] and Kugel [31] have both shown
how the Rayleigh relations can be used to model the
strain-field and dielectric displacement-field relation-
ships in ferroelectric ceramics. Furthermore, the growth
of higher frequency harmonic signals can also be pre-
dicted from hysteretic models of this type [20, 31, 52].
It should be noted that the observed nonlinearity in
piezoelectric ceramics does not always follow the ideal
Rayleigh model. However, the Rayleigh relations can
be viewed as one possible consequence of a more gen-
eral hysteretic model which can include higher order
terms, as discussed by Damjanovic [52] and Kugel [31].
Therefore, deviations from the Rayleigh Law could
be accommodated by introducing a greater level of
complexity into the underlying hysteretic relationship.
In physical terms, this could be viewed as indicating
differences in the domain wall force profile, perhaps
caused by the asymmetry associated with the preferred
polarisation direction in a poled ferroelectric specimen
or ‘clamping’ of the domain walls by dipolar defect
associates.

Damjanovic et al. have argued that the Preisach
model can serve as a very useful tool for interpret-
ing nonlinearity and hysteresis in the dielectric and
piezoelectric properties of ferroelectric ceramics [64].
In their description, which was based on the approach
of Bertotti [57], the hysteretic response of a property
R (e.g. strain, polarisation) is described in terms of the
internal field Fi and the coercive field Fc of a bi-stable
unit, as shown in Fig. 35. The macroscopic response of
an assembly of such bi-stable units is governed by a
function f (Fi, Fc), which defines the distribution of
bi-stable units over the Fi-Fc plane. As with the ap-
proach of Neel [55, 56], a constant distribution func-
tion gives rise to the Rayleigh Law. On the other hand,
deviations from the Rayleigh Law can be readily inter-
preted in terms of a slightly uneven distribution func-
tion f . For example, the existence of a finite threshold
field for nonlinearity, Ft, indicates that there are few bi-
stable units present having low values of Fi and Fc, less
than Ft. In this case, a finite value of the applied field,
greater than Ft, must be reached before the assembly of
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Figure 35 The energy (E) and hysteresis of an elementary bi-stable unit
(m is a generalized susceptibility), after Damjanovic et al. [64].

bi-stable units can begin to contribute to the macro-
scopic response R.

The Rayleigh Law in ferroelectrics could conceiv-
ably be interpreted in terms of a hysteretic polarisation
mechanism completely separate to that of domain wall
translation. This could occur if the domain walls were
so strongly pinned that reverse domain nucleation oc-
curred before significant movement of existing walls.
The polarisation switching mechanisms described be-
low represent one possible explanation of nonlinear be-
haviour, since partial domain switching at field levels
below the macroscopic coercive field could give rise to
dielectric and piezoelectric coefficients that increase as
a function of the electric field level.

The main practical difficulty in implementing a phe-
nomenological model of nonlinearity in piezoelectric
ceramics is likely to be the problem of characterising
all of the relevant nonlinear coefficients. This task may
be fairly straightforward in a monolithic ceramic com-
ponent, where the electric field and stress might be con-
sidered as uniform to a first approximation and only a
limited number of tensor coefficients need to be consid-
ered. However, it could be an insurmountable problem

when the stress and electric field distributions within a
multilayer device are required, in which case the full
dielectric, elastic and piezoelectric tensors are required.
For this reason, it would be very desirable to have ac-
cess to a micro-mechanical model, within which the
required nonlinear tensor components could be calcu-
lated from a smaller number of measurable values.

4.2. Hysteresis due to polarisation
switching

To date, most of the publications on micro-mechanical
modelling have employed a domain switching argu-
ment. With this approach, it is usually proposed that a
piezoelectric ceramic is made up from an array of sin-
gle domain grains and that ferroelectric or ferroelastic
switching can occur when the energy provided by the
applied electric or stress field exceeds a critical value.
This so-called ‘energy criterion’ method is expressed
in the following relation [65]:

Ei�Pi + X jk�x jk ≥ 2Ps Ecrit (59)

where Ps is the spontaneous polarisation and Ecrit is the
critical field for polarisation switching.

The P-E and x-E relationships predicted from such
models can usually simulate the main features of the
experimental data obtained at saturation (Fig. 36), but
the simplifying assumptions (e.g. no ferroelectric do-
mains within a grain) cast some doubt on the physical
validity of the model.

Increasing sophistication of such models has enabled
the effect of a static stress to be considered, as shown
in Fig. 37. In this case, the influence of grain to grain
interaction (i.e. the effect of 1 grain switching on the
behaviour of the surrounding grains) was incorporated
into the model using a mean field method [66].

As an alternative approach, a finite element method
was also investigated by Hwang and McMeeking, based
on a similar switching criterion [67]. The grain to grain
interactions of a polycrystalline ferroelastic solid were
modelled using a 10 × 10 × 10 cubic array of grains.
Hysteretic stress-strain relationships were simulated
using a range of different values for the switching en-
ergy. This model illustrated the manner in which one
crystallite inhibits the switching of a neighbouring one,
with the result that a significant coercive stress is re-
quired to initiate the switching process, even when the
critical switching stress for each individual crystallite
is very low.

It was noted by Hwang and McMeeking that the
micro-mechanical models developed did not provide
a very close correspondence to experimental data, and
that the computational effort required to produce the
simulation would make it unsuitable for incorporation
in a complex 3-dimensional problem. Rather, the value
of such models lies in the insight that they can pro-
vide into the mechanisms responsible for nonlinear be-
haviour and as a guide for the development of macro-
scopic constitutive laws [67].

One of the limitations of the micro-mechanical mod-
els developed by Hwang et al. lies in their neglect of
ferroelectric domain formation, and of the details of
the polarisation switching mechanism. As a result, it
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(a)

(b)

Figure 36 Comparison of simulated and measured (a) D-E and (b) x-E
hysteresis loops for 8/65/35 PLZT using the energy criterion for polari-
sation switching, after Hwang et al. [65].

is debatable whether the fitting parameters used in the
models can accurately represent the physical properties
of the materials in question. It is well known that fer-
roelectric domain formation occurs on cooling through
the Curie temperature Tc, in order to minimise the elec-
trostatic and elastic energies [68–72]. The elastic en-
ergy term is usually considered to be the most signifi-
cant, since the electrostatic field associated with a polar
domain can be neutralised, over a time period equal to
the dielectric time constant, τ = ρε, by the migration
of free charges.

Arlt et al. have developed models to describe the state
of residual stress associated with simple laminar 90◦
domain stacks and with more complex herringbone-
type domain configurations, as illustrated in Fig. 38
[69–72]. It can be noted that the average spontaneous
strain xg and polarisation Pg of a grain containing such
a domain pattern will be significantly reduced relative
to the single domain values x0 and P0. The magnitude
of the residual stress in a polycrystalline ceramic is
thereby reduced considerably by domain formation.

The mechanisms for polarisation reversal in ferro-
electric ceramics have remained elusive, in contrast to
the case in single crystal ferroelectrics where the do-

(a)

(b)

Figure 37 Comparison of simulated and measured (a) D-E and (b) x-E
hysteresis loops for 8/65/35 PLZT with a static compressive stress of
15 MPa, after Hwang et al. [66].

main switching process can be observed directly by op-
tical microscopy techniques [43]. Visual observations
using either optical or electron microscopy, are ham-
pered by the very fine scale of the domain patterns (do-
main widths are often less than 0.1 µm) and the lack of
elastic constraint in the thin or polished sections which
are necessary for such investigations. Modern force
microscopy techniques offer one possible solution to
this problem, although even with these methods it is
not easy to observe the domain switching processes
dynamically.

Arlt proposed a ferroelectric domain switching
mechanism based on the nucleation of a new transient
domain wall within an existing laminar 90◦ stack, as
shown in Fig. 39a [73, 74]. A certain energy barrier
must be overcome to create this wall, in order to ac-
commodate the associated elastic energy (Fig. 39b).
Once nucleated, this transient domain wall can sweep
through the grain without hindrance, thereby switching
its polarisation through 180◦. This type of domain re-
versal process does not involve any net change in elastic
energy, since the overall shape of the grain is the same
before and after switching.

On this basis, Arlt proposed an alternative model of
domain switching based purely on electrostatic consid-
erations [74, 75]. It was shown that the P-E hysteresis
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(a)

(b)

Figure 38 Domain configurations of tetragonal ferroelectric ceramics.
The laminar stack on the left is representative of fine-grained materials
while the banded ‘herringbone’ structure on the right represents coarse-
grained materials, after Arlt [73].

curves for both barium titanate and PLZT ceramics
could be simulated with this model, using reasonable
values for the grain polarisation, critical switching field,
and dielectric permittivity of the materials. It was also
suggested that the nonlinear properties of ferroelectric
ceramics could be interpreted in a similar manner, as
being due to partial domain switching at field levels
below the macroscopic coercive field.

The micro-mechanical polarisation switching ap-
proach has been taken a step further by Steinkopff,
who described the incorporation of such a model into a
3D piezoelectric element in the finite element program
ANSYS [76]. Although the full details of the methods
used to implement the model were not described, it was
demonstrated by Schuh et al. that the nonlinear elastic
and piezoelectric behaviour at sub-switching fields give
rise to an effective ‘softening’ of the ceramic within re-
gions in piezoceramic components experiencing high

(a)

(b)

Figure 39 Schematic diagram illustrating (a) the generation of a new
transient domain wall within a 90◦ domain stack, which is generated
at the grain boundary and traverses the grain from left to right without
deforming it (b) deformations associated with the transient domain wall
which have to be smoothed by elastic stresses, after Arlt [75].

levels of strain [77]. This effect had the important prac-
tical consequence that the levels of stress in the ‘in-
active’ regions of a multilayer piezoelectric actuator,
around the electrode edges, were considerably lower
than that which would be predicted by a linear analysis.

The LGD (Landau-Ginzburg-Devonshire) thermo-
dynamic theory of ferroelectric phase transformations
can also be used to model the nonlinear behaviour of
ferroelectrics. This method is based on expressing the
Gibbs free energy as a function of the appropriate order
parameter (typically polarisation or dielectric displace-
ment). The method can be used to describe the main
characteristics of the paraelectric-ferroelectric phase
transformation [43], and has been extended recently
to form a basis for understanding the switching char-
acteristics of ferroelectrics [78]. For example, the fer-
roelectric P-E hysteresis loop can be derived from an
equation of the form:

G = α

2
D2 + γ

4
D4 + δ

6
D6 where α = β(T − Tc)

(60)
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which leads to:

E =
(

∂G

∂ D

)
T

= αD + γ D3 + δD5 (61)

One limitation of this method is that in its usual form
it does not account for the presence of lattice defects,
grain boundaries, or ferroelectric domains. As a result
of this, the absolute value of the coercive field derived
from such a model can be several orders of magnitude
larger than that found experimentally in ferroelectric
ceramics [43].

Van Rensburg and Humberstone adopted this ap-
proach as part of NPL project AM4 [79]. The aim of this
work was to provide a simple model for ferroelectric
hysteresis, employing relatively few parameters, that
could be used as a predictive tool for modelling the
performance of piezoelectric ceramic devices. Their
method was based on a simple 1-dimensional model
of a 180◦ domain wall in an isolated ferroelectric crys-
tal. The change in polarisation resulting from an applied
electric field was achieved by movement of the domain
wall, assuming the following rate equation:

vw = v0e− δ

E (62)

where vw is the wall velocity, v0 is a constant, and δ

is a coefficient describing the electric field ‘sensitivity’
of the wall motion. An additional rate constant γR was
also introduced to describe the effect of an unspecified
relaxation process, which was thought to be possibly
thermal in origin. All other parameters in the model
were derived from standard data tables for piezoelectric
ceramics. In this manner, it was possible to simulate the
main features of the saturated P-E and x-E hysteresis
loops in soft ferroelectric ceramics.

The authors did not explore the feasibility of using
the model to simulate nonlinearity in the sub-switching
region, since it was designed primarily with regard to
the saturated hysteresis loops. Also, it is questionable
whether an expression of the form given in equation
62 could properly describe domain wall movement in
a ferroelectric ceramic at field levels below the macro-
scopic coercive field, since it predicts a finite domain
wall velocity even at relatively low fields. Given suffi-
cient time under a DC field, or a low frequency alternat-
ing sinusoidal signal, even a relatively slow domain wall
movement could cause complete polarisation reversal,
giving rise to saturated P-E and x-E relationships. This
clearly does not follow experimental observations in
most piezoelectric ceramics, since the majority of do-
main walls will move only a limited distance if E < Ec.
Therefore, without further development this model is
unlikely to provide an accurate description of nonlin-
earity at sub-switching field levels.

4.3. Path-dependent hysteresis
Hysteretic phenomena are particularly problematic
in micropositioning applications, with the result that
closed-loop control systems incorporating displace-
ment sensors must be used when a high position-
ing accuracy is required. One approach described by

Newcomb and Flynn [80] is to control the electric
charge rather than voltage, which yields much improved
linearity, as would be expected from the near-linear
strain-dielectric displacement (charge density) relation-
ship described by Kugel and Cross [31]. However, this
method would require the use of a specially designed
charge drive amplifier which increases the hardware
costs significantly.

Ge and Jouaneh have shown how a Preisach-type
model can be used to more accurately predict the hys-
teretic and path-dependent field-displacement relation-
ship of a piezoelectric actuator [81, 82]. Certain modifi-
cations to the classical Preisach model were required to
take account of the unipolar drive which is commonly
used for piezoelectric actuators and the presence of a
mechanical bias, which was considered to be the origin
of asymmetry in the displacement-voltage relationship
[81].

The development of a numerical Preisach model,
which could be used to predict the response of a given
piezoceramic actuator, involved the determination of a
series of first order reversal curves within a ‘major’ hys-
teresis loop, as illustrated in Fig. 40. The data collection
routines required by this approach were automated,
such that the major loop at a given maximum drive
voltage and 10 first order reversal curves could be col-
lected within 10 s. Intermediate values required for the
model were then obtained by interpolation between val-
ues derived from these first order reversal curves. It was
shown that the model enabled the displacement char-
acteristics of a piezoelectric actuator in response to a
continuous sinusoidal voltage signal to be simulated
with an accuracy of 3% [81].

In a subsequent paper [82], the same authors showed
how the sophistication of the model could be improved
by incorporating a series of second order reversal curves
(Fig. 40). With suitable modifications, it was possible
to simulate the displacement response from an actuator
due to an arbitrary input signal to within 3%, as shown

Figure 40 Illustration of the displacement-voltage characteristic of a
piezoceramic actuator, showing a first-order and a second-order reversal
curve, and a major and a minor hysteresis loop, after Ge and Jouaneh
[81].
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Figure 41 Comparison of actual and predicted hysteresis response of a
piezoceramic actuator under an exponentially decaying sinusoidal exci-
tation, after Ge and Jouaneh [82].

in Fig. 41. The model was subsequently incorporated
into the control system for a piezoelectric positioning
device and was found to give a significant improvement
in positioning accuracy.

5. Summary and comparison of models for
nonlinearity in piezoelectric ceramics

A large body of experimental data has been published
concerning the nonlinear properties of piezoceramics,
as described in Section 2 above. It is clear that in
most ferroelectric ceramics the dielectric, elastic and
piezoelectric coefficients increase considerably with
field/stress amplitude, even at sub-switching levels. In
many cases, it has been shown that the relevant co-
efficients increase in an almost linear fashion with
field/stress amplitude, according to the Rayleigh Law.
This provides a fairly straightforward means of mod-
elling the nonlinear dielectric and piezoelectric prop-
erties of piezoceramic components, provided that the
relevant nonlinear dielectric and piezoelectric coeffi-
cients can be measured and that the electric field and
stress can be considered as uniform within the com-
ponent. The generation of higher frequency harmonic
components through the nonlinear dielectric or piezo-
electric coefficients can also be interpreted in terms
of a Rayleigh-type hysteretic relationship, which could
be useful in modelling the performance of high power
piezoelectric transducers.

The value of the threshold field/stress for nonlinear
behaviour, as well as the frequency and temperature-
dependence of the nonlinear coefficients should all be
available for accurate modelling of nonlinear behaviour
in a wide range of operating conditions. The influ-
ence of a static electric field or stress should also be
considered, since piezoelectric devices will often ex-
perience such conditions in practical operation. There
are already indications that such effects can be mod-

elled in a fairly simple manner, although possible time-
dependent deaging effects caused by partial domain
switching under the influence of a static electric field
or stress should not be ignored.

Simulation of the electric field and stress distribu-
tions within complex piezoceramic components (e.g.
multilayer actuators) requires a knowledge of the non-
linear behaviour of the materials under the combined
action of an alternating electric field and stress. This
represents a very challenging problem, since to date
the interactions between the nonlinear dielectric, elas-
tic and piezoelectric tensor components have not been
studied to any great extent. The thermodynamic theory
(Section 3) suggests one approach, in which the nonlin-
ear direct and converse piezoelectric coefficients could
first be determined separately, under conditions of zero
stress and zero electric field respectively, according to
Equations 54 and 55. The validity of these coefficients
as the cross-coupling terms could then be established
by controlled experiments combining electric and me-
chanical loads. The nonlinear dielectric and elastic co-
efficients can be determined more easily by dielectric
measurements under zero stress and stress-strain mea-
surements under zero electric field respectively.

The development of a micro-mechanical model,
based on either ferroelectric domain switching or do-
main wall translation is very attractive. Such a model
could in principle provide the required tensor coeffi-
cients given a relatively small number of fitting param-
eters. Steinkopff [76] and Shuh [77] have already incor-
porated such a model, based on a polarisation switching
mechanism, into a general purpose finite element code.
The results presented by Schuh et al. [77] appear to
show the expected reduction in stress within a multi-
layer actuator, due to ‘softening’ of the elastic modulus
through the ferroelastic behaviour.

It is apparent from certain experimental observations
that the dielectric and piezoelectric coefficients mea-
sured through the converse piezoelectric effect increase
in an almost identical manner with increasing field am-
plitude (Figs 17, 18). This could provide a useful means
of predicting the nonlinear piezoelectric coefficients
from the more easily measured dielectric coefficients.
Likewise, the direct proportionality between the real
and imaginary coefficients that has been observed in
the dielectric properties (Fig. 14) could provide a sim-
ple method for numerical modelling of the loss or phase
angle as a function of field amplitude. Further experi-
mental investigations could be devised to help establish
the range of validity of these relationships.

None of the methods mentioned above would be
appropriate for modelling the hysteretic and path-
dependent effects that are observed in precision piezo-
ceramic actuators. In this case, it has been shown by Ge
and Jouaneh that a Preisach-type model can be applied
to simulate the observed displacement-voltage relation-
ships, eventually showing the ability to accurately pre-
dict the displacement resulting from an arbitrary input
voltage signal [81, 82]. Conversely, such an approach
would not be suitable for modelling the behaviour of
a monolithic piezoceramic transducer operating under
widely varying levels of stress and electric field or the
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stress and electric field distribution within a complex
piezoceramic component.

In terms of the physical models used to interpret the
origin of nonlinear behaviour in ferroelectric ceram-
ics at sub-switching levels of electric field and stress,
the concept of domain wall translation is very con-
vincing. This model seems able to explain the field
and frequency-dependence of the dielectric, elastic and
piezoelectric properties of piezoceramics within the
Rayleigh range, which is of greatest importance for
the practical operation of piezoelectric actuators and
acoustic transducers. The dependence of characteris-
tic nonlinear features such as the threshold field and
Rayleigh coefficient on microstructure and composi-
tion (particularly the presence of acceptor-related point
defects) can also be explained in quantitative fashion
by such a domain wall translation model.

The concept of Rayleigh behaviour as one specific
form of nonlinearity, represented in more general terms
by a Preisach distribution function, provides further in-
sight into the ferroelectric and ferroelastic switching
events that are the origin of nonlinearity and hysteresis
in piezoelectric ceramics [64]. It seems most likely that
these switching events are associated with irreversible
‘jumps’ of ferroelectric domain walls as they traverse
an array of pinning defects. This could provide the basis
for an improved understanding of various phenomena
in ferroelectrics, such as ageing and field/stress-induced
deageing effects.

The polarisation switching mechanisms described
above [65–67, 73–75] represent another possible expla-
nation of nonlinear behaviour in the Rayleigh region,
since partial domain switching at field levels below the
macroscopic coercive field could give rise to a nonlinear
and hysteretic contribution to the dielectric, elastic and
piezoelectric properties that becomes more pronounced
as the field level increases. However, the different types
of nonlinear behaviour that are observed in ferroelectric
ceramics below and above the coercive field seem to in-
dicate that separate mechanisms are involved. It seems
likely, therefore, that a domain wall translation mech-
anism is responsible for nonlinearity in the Rayleigh
region below Ec, while domain switching is dominant
above Ec. Distinguishing between these two mecha-
nisms may not be straightforward, since both involve
the reorientation of polarisation in a given small polar
region. The use of a range of structural characterisation
techniques (XRD, AFM, nano-indentation methods), in
combination with field-induced polarisation and strain
measurements, may be able to solve this problem.

An alternative hysteretic mechanism was suggested
by Kugel and Cross [31], who proposed that the co-
operative effects between ferroelastic grains (i.e. the
field-induced inter-granular stresses) could be largely
responsible for the hysteresis in ferroelectric ceram-
ics. This point was also highlighted by Hwang and
McMeeking [67], who predicted that a significant fer-
roelastic hysteresis could occur in a bulk ceramic ma-
terial even when the individual grains had a very low
critical switching stress. It should be recognised that
the residual and field-induced inter-granular stresses in
ferroelectric ceramics will certainly have an influence

on the nonlinear properties of such materials, but at
present there is little evidence to say how significant this
is likely to be. Detailed fundamental investigations, for
example involving experimental studies of the change
in residual stress under an applied electric field, will be
necessary in order to clarify this issue.
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